教案的风格可以因人而异,但要确保逻辑清晰,层次分明,信息准确。音乐教学资源教案 高三数学教案简案篇一教学目标: 结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 教学重点: 掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 教学过程 一、复习 二、引入新课 1.假言推理 假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。 (1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。 (2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。 2.三段论 三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。 3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。 (1)对称性关系推理是根据关系的对称性进行的推理。 (2)反对称性关系推理是根据关系的反对称性进行的推理。 (3)传递性关系推理是根据关系的传递性进行的推理。 (4)反传递性关系推理是根据关系的反传递性进行的推理。 4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。 オネ耆归纳推理可用公式表示如下: オs1具有(或不具有)性质p オs2具有(或不具有)性质p…… オsn具有(或不具有)性质p オ(s1s2……sn是s类的所有个别对象) オニ以,所有s都具有(或不具有)性质p オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。 小结:本节课学习了演绎推理的基本模式. 高三数学教案简案篇二数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。 二.对教学内容的认识 1.教材的地位和作用 本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。 2.教材处理 基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。 通过本节课的教学,我力争达到以下教学目标: 3.教学目标 (1)知识技能: 借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。 (2)数学思考: 通过对较小的数的问题的学习,寻求科学的记数方法。 (3)解决问题: 能解决与科学记数有关的实际问题。 (4)情感、态度、价值观: 使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。 4.教学重点与难点 根据教学目标,我确定本节课的重点、难点如下: 重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。 难点:感受较小的数,发展数感。 三.教法、学法与教学手段 1.教法、学法: 本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。 因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。 2.教学手段: 1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。 2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。 四.教学过程 (一).复习旧知,铺垫新知 问题1:光的速度为300000km/s 问题2:地球的半径约为6400km 问题3:中国的人口约为1300000000人 (十).教学设计说明 本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。 高三数学教案简案篇三一、过程目标 1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。 2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。 3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。 二、识技能目标 1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。 2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。 三、情感目标 1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。 2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。 教学重点难点: 1对数函数的定义、图象和性质。 2对数函数性质的初步应用。 教学工具:多媒体 【学前准备】对照指数函数试研究对数函数的定义、图象和性质。 高三数学教案简案篇四教学目标: 1、知识与技能: 1)了解导数概念的实际背景; 2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法; 3)理解导数的几何意义; 4)能进行简单的导数四则运算。 2、过程与方法: 先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。 3、情态及价值观; 让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。 教学重点: 1、导数的求解方法和过程; 2、导数公式及运算法则的熟练运用。 教学难点: 1、导数概念及其几何意义的理解; 2、数形结合思想的灵活运用。 教学课型:复习课(高三一轮) 教学课时:约1课时 高三数学教案简案篇五圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义来解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。 四、教学目标 1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义__问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3、借助多媒体辅助教学,激发学习数学的兴趣。 五、教学重点与难点: 教学重点 1、对圆锥曲线定义的理解 2、利用圆锥曲线的定义求“最值” 3、“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义__ 高三数学教案简案篇六(一)地位与作用 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 (二)学情分析 (1)学生已熟练掌握_________________。 (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。 (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。 (4)学生层次参次不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。 (2)过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 (二)重点难点 本节课的教学重点是________________________,教学难点是_____________________。 三、教法、学法分析 (一)教法 基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. (二)学法 在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 四、教学过程分析 (一)教学过程设计 教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。 (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。 (2)引导探究,建构概念。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程. (3)自我尝试,初步应用。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究. (4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 (5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题: (1)通过本节课的学习,你学到了哪些知识? (2)通过本节课的学习,你的体验是什么? (3)通过本节课的学习,你掌握了哪些技能? (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 高三数学教案简案篇七1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 周期函数的概念,周期的求解。 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期t=。 (2)函数(其中均为常数,且 的周期t=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期t=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() a、b、c、d、 2、函数的`最小正周期是() a、b、c、d、 3、函数的最小正周期是() a、b、c、d、 4、函数的周期是() a、b、c、d、 5、设是定义域为r,最小正周期为的函数, 若,则的值等于() a、1b、c、0d、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为t,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在r上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 高三数学教案简案篇八结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 一、复习 二、引入新课 1.假言推理 假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。 (1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。 (2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。 2.三段论 三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的'叫“小前提”。 3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。 (1)对称性关系推理是根据关系的对称性进行的推理。 (2)反对称性关系推理是根据关系的反对称性进行的推理。 (3)传递性关系推理是根据关系的传递性进行的推理。 (4)反传递性关系推理是根据关系的反传递性进行的推理。 4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。 オネ耆归纳推理可用公式表示如下: オs1具有(或不具有)性质p オs2具有(或不具有)性质p…… オsn具有(或不具有)性质p オ(s1s2……sn是s类的所有个别对象) オニ以,所有s都具有(或不具有)性质p オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。 小结:本节课学习了演绎推理的基本模式。 微信公众号搜索 说说网 ,再点击 关注 ,这样您就可以每天订阅到精典说说美文了。每天都有分享。完全是免费订阅,请放心关注。
|
上一篇:幼儿园活动方案内容(专业23篇)