说说网

范文大全 说说签名 说说名字 说说短句 说说百科

当前位置:首页 > 方案 > 高三数学教案(优质5篇) >

高三数学教案(优质5篇)

下载文档docx

作为一位无私奉献人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编带来的优秀教案范文,希望能够喜欢!

高三数学教案篇一

【教学目标】:

(1)知识目标:

通过实例,了解简单的逻辑联结词“且”“或”的含义;

(2)过程方法目标:

(3)感与能力目标:

在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:

通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。

【教学难点】:

简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。

【教学过程设计】:

教学环节教学活动设计意图

情境引入问题

下列三个命题间有什么关系

(1)12能被3整除;

(2)12能被4整除;

知识建构归纳总结:

一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,

记作,读作“p且q”。

引导学生通过通过一些数学实例分析,概括出一般特征。

1、引导学生阅读教科上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:

当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,

学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

高三数学教案篇二

教学目标:

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:

掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程

一、复习

二、引入新课

1.假言推理

假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论

三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

オネ耆归纳推理可用公式表示如下:

オs1具有(或不具有)性质p

オs2具有(或不具有)性质p……

オsn具有(或不具有)性质p

オ(s1s2……sn是s类的所有个别对象)

オニ以,所有s都具有(或不具有)性质p

オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。

小结:本节课学习了演绎推理的基本模式.

高三数学教案篇三

理解数列的概念,掌握数列的运用

教学重难点

理解数列的概念,掌握数列的运用

教学过程

【知识点精讲】

1、数列:按照一定次序排列的一列数(与顺序有关)

2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

(通项公式不)

3、数列的表示:

(1)列举法:如1,3,5,7,9……;

(2)图解法:由(n,an)点构成;

(3)解析法:用通项公式表示,如an=2n+1

5、任意数列{an}的前n项和的性质

高三数学教案篇四

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

如图所示,建立复平面以后,复数 与复平面内的点 形成—一对应关系,而点 又与复平面的向量 构成—一对应关系.因此,复数集 与复平面的以 为起点,以 为终点的向量集 形成—一对应关系.因此,我们常把复数 说成点z或说成向量 .点 、向量 是复数 的另外两种表示形式,它们都是复数 的几何表示.

相等的向量对应的是同一个复数,复平面内与向量 相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是 ,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问 的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量 的模,又叫做向量 的绝对值,也就是有向线段oz的长度 .它也叫做复数 的模或绝对值.

高三数学教案篇五

数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神情感、态度方面都得到良好的发展。

二.对教学内容的认识

1.教材的地位和作用

本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值

2.教材处理

基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。

通过本节课的教学,我力争达到以下教学目标:

3.教学目标

(1)知识技能:

借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。

(2)数学思考:

通过对较小的数的问题的学习,寻求科学的记数方法。

(3)解决问题:

能解决与科学记数有关的实际问题。

(4)情感、态度、价值观:

使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。

4.教学重点与难点

根据教学目标,我确定本节课的重点、难点如下:

重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。

难点:感受较小的数,发展数感。

三.教法、学法与教学

1.教法、学法:

本节课的教学对象是七年级的学生,这一年级的学生对于周围世界社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。

因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。

2.教学手段:

1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。

2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。

四.教学过程

(一).复习旧知,铺垫新知

问题1:光的速度为300000km/s

问题2:地球的半径约为6400km

问题3:中国的人口约为1300000000人

(十).教学设计说明

本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。

微信公众号搜索 说说网 ,再点击 关注 ,这样您就可以每天订阅到精典说说美文了。每天都有分享。完全是免费订阅,请放心关注。
猜你喜欢
相关方案
推荐方案