一个好的教学计划应该具备明确的教学目标和清晰的教学内容安排。教学计划的编写需要注意一些核心要素,以下是一些值得关注的问题和建议。 平行四边形的面积教学设计(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。 (2)能运用平行四边形的面积公式解决相应的实际问题。 使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。 (1)渗透转化的数学思想方法。 (2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。 探索并掌握平行四边形面积的计算公式。 1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。 2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。 1、多媒体课件、自制教具。 2、每个学生准备1把剪刀、一张平行四边形纸片。 一、创设情境,引入课题: 生: 现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算) 师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。 (通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?) 师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题) 二、探究新知,导出公式: 1、猜想: 师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高) 生: 生: 师:你们是怎么推导出这个公式的呢? 师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次) 2、验证: (1)学生动手操作 (2)小组演示 (3)师课件演示 生: 板书:长方形的面积=长×宽 平行四边形的面积=底×高 师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢? (4)推导过程:(课件显示) 我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。 (5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。 师板书:s=ah 3、面积公式的运用 三、巩固发展、实际运用: 1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件) 2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件) 四、课后延伸: 五、反思与体会: 同学们,想一想,这节课你有哪些收获呢?(生) 师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见! 平行四边形的面积教学设计1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。 2、通过操作、分析讨论等活动,培养学生 动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。 3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。 4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。 使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。 能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。 一、情景引入 1、联系实际选择建房用地。 (2)联系刚才的选择地的情况,让学生比较两块地的大小情况。 二、探究新知 1、面积计算公式的推导: (1)讲解相关的要求。明确小组研究要求。 (2)操作验证。巡视,个别指导。 (3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。 问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法) (4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。 引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。) 教师逐步点击交互,得出: 长方形的面积=长×宽 平行四边形的面积=底×高 (5)用字母表示面积计算公式。 (6)小结。(明确转化的方法。) 2、面积计算公式的应用: (1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。 讨论后,给出底和高,进行计算。 (2)计算长方形面积,再次通过计算的方法说明两块地面积相等。 (3)试一试:计算平行四边形的面积。 3、教学小结。进行推导: (1)明确研究的要求。 (2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。) (3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。 (4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。 (5)了解认识、明确:s=a×h,s=a·h或者s=ah。 (6)进行小结。 4、初步运用公式。 (1)教学试一试,(2)练一练。 三、巩固应用 1、练习二“第1题”。 先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。 2、练习二“第2题”。 可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。 3、练习二“第3题”。 这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。 4、练习二“第5题”。 让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。 四、课堂总结 今天学习了什么?你有什么收获?(让学生自由发挥。) 上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面: (一)创设生活情境,激发探究欲望 小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。 (二)重视学生的自主探索和合作学习 在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。 (三)培养学生的问题意识 问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的`欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。 平行四边形的面积教学设计1、理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。 2、通过操作、观察、比较等实践活动,经历主动探索面积计算公式的过程,培养分析问题、解决问题的能力,进一步发展空间想象力和动手操作能力。 3、渗透转化的数学思想,激发探索的兴趣,增强数学应用意识,提高解决实际问题的能力。 理解并掌握平行四边形面积的计算公式,会利用公式正确计算平行四边形的面积。 理解平行四边形面积公式的推倒过程,会利用公式正确计算平行四边形的面积。 平行四边形卡片 剪刀 方格子 一、 创设情境,激趣导入 学生汇报 (多媒体出示一块长方形的地,一块平行四边形的地) 学生汇报 师:你们准备怎样解决呢? 生:分别算出长方形和平行四边形的面积就行了。 师:怎样才能知道这块长方形地的面积呢? (引导学生得出两种方法:数格子和用公式计算:测量出它的长和宽,用长乘宽就等于长方形的面积。) 多媒体出示方格和长方形的长与宽,学生求出长方形的面积。 师:那这块平行四边形面积怎样求呢? 学生小组交流 师:今天我们就来研究怎样求平行四边形的面积。(板书:平行四边形的面积) 二、动手实践,探索新知 学生汇报,教师引导: 1、 数格子求平行四边形的面积 (多媒体出示格子,并说明一个方格表示1平方厘米) 师:现在就请同学们用这个方法算出平行四边形的面积(说明要求:不满一格的都按半格计算)。 学生汇报,得出平行四边形的面积。 师:通过数格子,我们发现我们的平行四边形萝卜地和老伯的长方形地的面积一样大,这样一来,我们换地公平了吗?(公平) 2、 割补法求平行四边形的面积 学生猜测 师:这还只是我们的一个猜想,大胆合理的猜想是我们迈向成功的第一步,那么接下来就请同学们利用手中的平行四边形卡片、剪刀等学具,想办法来验证验证。 学生动手实践,合作交流。 学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?学生汇报,师生总结:因为长方形是特殊的平行四边形,它的面积等于长乘宽) 教师用课件演示剪——平移——拼的过程。 师:我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?引导学生讨论: 1、拼出的长方形和原来的平行四边形比,面积变了没有?什么变了? 2、拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? 3、你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗? 学生汇报,教师归纳: 经过同学们的努力,我们发现把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。 师:现在谁能用一句话概括出平行四边形的面积? 学生汇报,教师板书: 此主题相关图片如下: s=a×h 师:刚才我们已经推导出了平行四边形的面积公式,知道了要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高) 三、 练习深化,巩固新知 1、计算下列图形的面积。(单位:cm) 此主题相关图片如下: 2、先估一估,再算一算下面哪个平行四边形的面积与给出的平行四边形的面积一样大? 此主题相关图片如下: 3、先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。 此主题相关图片如下: 四、知识应用,总结评价 师:生活中还有哪些地方应用到我们今天所学的知识呢? 学生交流 学生交流。 平行四边形的面积教学设计1.学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。 2.但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。 1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。 2.过程与方法目标: (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。 (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。 3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。 重点:理解掌握平行四边形的面积计算公式,并能正确运用。 难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。 这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现) 这块花坛既不是长方形也不是正方形,如何求出这块地的面积? 为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习的平行四边形的面积。(板书:平行四边形的面积) 方法一:用数方格的方法求平行四边形的面积 以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡) 1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。 根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律! 2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。 (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,) (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高) 方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。 1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形) 2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。) (2)学生实验操作,教师巡视指导。 3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么? (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变) (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。) (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽) (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高) 4.全班交流推导公式: (1)谁愿意把你的转化方法说给大家听呢?请上台来交流! (2)有没有不同的剪拼方法?(继续请同学演示)。 研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。 (3)板书平行四边形面积推导过程 知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。 1.出示书上82页的1题,请大家做一做。 2.汇报交流:谁来说一说你是怎么做的? 3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高) 1、试一试 计算下列平行四边形的面积,与同学说说你的方法。 35cm 20dm 4.8m 26cm 28dm 5m 公式:公式:公式: 列式:列式:列式: 2、我能填得准。 (1)平行四边形的面积公式用字母表示为()。 (2)一个平行四边形的底是9cm,对应的高是4cm,面积是()。 反思一下刚才我们的学习过程,你有什么收获? 平行四边形的面积教学设计1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。 2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。 3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。) 掌握平行四边形的面积计算公式,能准确解决实际问题。 理解平行四边形面积计算公式的推导方法与过程。 两张格子纸,一张白纸,可变形的平行四边形 一、揭示课题:平行四边形(展示课件课本情景图) 生:平行四边形、长方形、圆形...... 师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片) 生:面积(学生回答面积后,马上追问,什么是面积?) 师:什么是面积? 生:面积就是一个图形所占平面的大小。 师:那么我们学过那些图形的面积? 生:长方形和正方形。 师:它们的面积怎么求? 生1:长方形的面积=长×宽 生2:正方形的面积=边长×边长 师板书:长方形的面积=长×宽 师:长方形的面积为什么等于长×宽?咱们是怎样求出来的? (设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算) 师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题) 二、新授 师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸) 生:能 师:怎么看出来? 生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。 生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。 师:长方形的面积可以直接数出来,那么平行四边形的面积能不能用数方格的方法,直接数出它的面积呢! 生操作。(拿出1号方格纸,不满一格的都按照半格计算) 师:看看同学们都是怎么数的? 生:20个满格,8个半格,一共24个格,面积是24平方米。 (引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。) 猜测一下:平行四边形的面积可能与什么有关? 生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。) 生1:底是6米。 生2:高是4米。 生3:6×4=24,所以平行四边形的面积是底×高。 (拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。 生操作 出示学生的作品,介绍一下是怎么想的。 生1:用拼的方法,拼成一个长方形,再数出面积。 生2:也是拼,剪掉上面的拼下面,剪下面拼上面。 师:刚才他们都用到了一个动词,是什么?(生:拼) 师板书:拼 生4:整块简拼,移到右边。 师:拼的过程其实也是我们数学当中的平移的过程。 师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。 3、出示3号白纸,学生自己画一个平行四边形 学生操作,小组讨论。 (此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报) 展示学生作品 师:这样的平行四边形要怎样计算面积呢?还能数方格吗? 小组讨论,学生操作剪一剪,拼一拼。 生1:不沿高剪得 生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。 师板书:长方形的面积=长×宽。 师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢? 师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系? 学生讨论 生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。 生2:这两个图形的面积是相等的。 师总结:验证成功,平行四边形的面积=底×高 (汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书) 师板书:平行四边形的面积=底×高 3、如果用字母s表示面积,a表示底,h表示高 你会用字母表示平行四边形的面积吗? 生:s=a×h 利用公式来计算 出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。 拓展练习: (1)选择题:平行四边形的底是5米,高是4米,它的面积是() a 20米b 20平方米c 18米d 18平方米 (2)出示图形(强调高和底是相对的) (3)画出一个底是3cm,高的5cm的平行四边形。 师总结:等底等高的平行四边形面积相等,但是形状不一样。 三、拓展探究 1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程 师:那么这个平行四边形在拉成长方形时面积发生改变了吗? 学生讨论 学生1:没有改变 学生2:改变 学生辩论 师:周长一样长的平行四边形和长方形,面积不一定也一样。 四、总结 这节课我们学习了什么,回顾整堂课的过程。 用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。 预知后事,自己分晓。 板书设计 新面积不变平行四边形的面积=底×高 拼数 已学(转化)长方形的面积=长×宽 s=a×h 平行四边形的面积教学设计【教学内容】: 青岛版实验教材小学数学五年级上册第76页内容。 【教学目标】: 1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。 2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。 3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。 【教学准备】: 学生:方格图、平行四边形纸片、直尺、剪刀、三角尺 教师:课件、投影仪 【教学过程】: 一、谈话引入,提出问题 (1:虾池的面积是多少? 2:虾池是什么形状的?……) 师:虾池是什么形状的?(平行四边形) 师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积) 二、合作探索,解决问题 1、猜想 师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图) 师:希不希望通过自己的探究找到这个公式? 师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。 (学生独立思考)。 师:谁来说? (1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。) 师:谁有不同想法? (2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。) 师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证) 师:对!我们要逐个进行验证,看看正确的公式究竟是什么。 为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读) 1、小组同学先讨论验证的方法,再动手验证。 2、小组成员要团结合作,合理分工。 3、每组推选1名代表进行汇报,其他组员可以补充 4、使用学具时注意安全,用完后装入信封。 2、验证“底×邻边” 师:先来验证“底×邻边”这个猜想对不对。 比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。 (学生合作,教师巡视) 3、交流 师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流? (我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。) 师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有) 师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。 4、验证“底×高” (学生活动,教师参与) 5、交流 师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果? (1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。 师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。) (2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。) 师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。) 师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。 师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的) 师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢? (平行四边形没有“长”和“宽”。) 师:说的真好,我们可不能混淆了。 三.应用公式,巩固训练 师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米) 师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?) 师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾)) (出示课件:四个挑战) 为什么?(单位:厘米 图略) 2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题) 4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少? (图略) 师:真不错,挑战成功。 四.收获平台,课外延伸 师:不知不觉中就要下课了。想一想,这节课你有哪些收获? (我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。) 师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的? (猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。) 平行四边形的面积教学设计《义务教育教科书》人教版数学课本五年级上册87——88页。 平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习的平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。 学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。 1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。 2、在探究的过程中感悟“转化”的数学思想和方法。 3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。 4、引领学生回顾反思,获得基本的数学活动经验。 推导平行四边形面积计算公式。应用公式解决实际问题。 理解平行四边形的面积计算公式的推导过程。 平行四边形纸片若干,直尺、剪刀、。 讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。 1、联系旧知,做出猜想。 看到这个题目,你想到了我们学过哪些有关面积的知识? 大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算? 2、初步验证,感悟方法。 根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。 引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形) 学生数方格并来验证自己的猜想。 3、剪拼转化,发现规律。 除了数方格,我们还能用什么方法来验证呢?(学生思考) 能否将平行四边形转化成我们学过的图形再来进行计算呢? (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。 (2)展示交流。(演示) 4、观察比较,推导公式。 小结:长方形面积=长×宽 平行四边形面积=底×高 s = a × h 5、展开想象,再次验证。 是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢? 学生先闭眼想象,再借助手中的工具加以验证。 6、回顾反思,总结经验。 回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。 把平行四边形转化成长方形面积。(剪拼—转化) 然后找到转化前、后图形之间的联系。(寻找—联系) 根据长方形面积公式推导出平行四边形面积公式。(推导—公式) 1、解决实际问题 平行四边形花坛底是6米,高是4米,它的面积是多少? 2、出示如下图 算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。) 3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。) 王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错? 4、现在你明白阿凡提是怎么打败巴依的了吗? 引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。 思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗? 转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。 通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。 【设计意图:试图把学生带入更加广阔的学习空间。】 平行四边形的面积 长方形面积=长×宽 平行四边形面积=底×高 s = a × h 平行四边形的面积教学设计小学数学五年级上册第87——88页 知识与技能目标: 理解并掌握平行四边形面积计算公式。 过程与方法目标: 能够运用公式解决实际问题。 情感态度与价值观: 通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。 (1)教学重点:平行四边形面积计算公式的推导和运用。 (2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。 1、课件 2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。 这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。 一、激情导课 (大屏幕出示校园情景图) 同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积) 看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标) 1、探究平行四边形面积计算公式。 2、运用公式解决生活中的实际问题。 师随着学生的回答在课题前板书:探究和运用 师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有) 二、民主导学 任务一:自主探究平行四边形的面积计算方法。 同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法) 任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。 提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!) 自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。 展示交流: 1、先请数方格的小组上台展示。 预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。 我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。 (对小组进行评价) 师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。 2、请用割补法的小组上台展示自己的研究成果。 预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。 (师随着生的表述板书) 长方形的面积=长×宽 平行四边形的面积=底×高 (对小组进行评价) 预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以...... (对小组进行评价) 预设:(3)、师演示。 师:计算公式我们通常都可以用字母来表示。面积用s,底用a,高用h来表示,那么平行四边形的面积可以表示为:s=ah。 师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能) 任务二:解决问题 出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少? 自主学习:独立在练习本上解答,完成后与小组内同学交流。 展示交流:注意指导学生的书写格式。 三、检测导结 1、计算下面每个平行四边形的面积。 2、已知下面图形的面积和底,怎样求出它的高? 以上三题,做对一道得一颗星,全部做对得三颗星。 集体订正,组内互批。 反思总结:请同学们谈谈这节课的收获吧! 平行四边形的面积教学设计(一)知识与技能 让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的'实际问题。 (二)过程与方法 通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。 (三)情感态度和价值观 通过活动,培养学生的探索精神,感受数学与生活的密切联系。 教学重点:探索并掌握平行四边形面积计算公式。 教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。 平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。 (一)创设情境,激趣导入 1。创设情境。 (1)呈现教材第86页单元主题图。(ppt课件演示) 1。怎么制作ppt课件算平行四边形面积 2。五年级上册数学组合图形面积教案 3。ppt模板怎样制作平行四边形面积推导动画 4。pppt怎么制作动画课件计算平行四边形面积 5。五年级上册数学图形与几何教案 平行四边形的面积教学设计使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。 课件、平行四边形卡片、剪刀、三角板、直尺等。 “我能行”四步教学法。(详见文后注)。 同学们,你们想了解老师吗?你想知道关于我的什么情况? 老师的年龄是多少?教几年级? 师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜? 生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。 师:想得真好,许老师就是(30)岁。 师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。这节课我们就用这种数学“转化”思想来学习本节课。 师: 1.在数学课堂上哪些地方用到了“转化”? 预设:应用题三步转化成两步,再转化成一步;求未知数x,开始给出的式子比较复杂,然后一步一步转化成简单的方程。 看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。 2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢? 生:演示方法。 3.师:为什么把它拼成一个长方形呢? 预设:学过长方形面积的计算,而且能够拼成长方形。 这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。 4.刚才的图形“转化”过程,什么变了,什么没变? 【设计意图】。 情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。 师: 预设:长方形、正方形、底、高、夹角、相邻的边等。 2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。 3.请带着问题自学。(课件)。 4.四人小组交流一下你是怎样“转化”平行四边形面积的。 【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。 师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗? 4.你是怎样推导的?说一下你的操作过程。 5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)。 6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)。 8.剪拼后的长方形的长,是原平行四边形的什么?宽呢? 9.我们学习过用字母来表示数量关系式,请同学们翻开数学书p81自学用字母怎样表示平行四边形的面积。(板书:s=ah)。 【设计意图】。 在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。 1.练习检测卡一题。 2.课件:判断、选择题、口答列式。 3.练习检测卡二、三题。 4.谈谈你对这节课的收获,好吗? 拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。 【设计意图】。 归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。 《平行四边形的面积》教学设计:九年义务教育六年制小学数学第九册70页一72页。 1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。 2.培养学生初步的逻辑思维能力和空间观念。 3.结合教材渗透转化思想。 教学重点:掌握和运用平行四边形面积计算公式。 教学难点:平行四边形面积公式的推导过程。 课前准备:投影器、长方形框架、平行四边形纸片等。 一、课前谈话: 师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的? 二、创设生活情境 学生自由发言。 师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书) 三、探究新知 1、自主探索 出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积! 学生以小组为单位开展活动,教师巡视。 汇报、反馈:都有结果了吧,哪个小组先来汇报? 各小组派代表发言。 2、对比分析 每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。 3、归纳总结 四、巩固运用 咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧! 1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧? 2、p82看第2题。 3、课件出示:p83第题,这两个平行四边形的面积相等吗?为什么? 五、小结:今天大家学得开心吗?你们都有哪些收获? 《平行四边形的面积》教学设计1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。 3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。 教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。 教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。 多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。 一、复习旧知,导入新课。 1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。 2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。 师板书:长方形的面积=长×宽 师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。 二、动手实践,探究发现。 1、剪拼图形,渗透转化。 (1)小组研究 老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。 (2)汇报结果 第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。 板节课题:平行四边形面积计算 2、动手实践,探究发现。 (2)学生重新剪拼,互相探讨。 (3)汇报讨论结果。 师板书:平行四边形的面积=底×高 (4)让学生齐读:平行四边形的面积等于底乘以高。 (5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件? (必须知道平行四边形的底和高) 课件展示讨论题:平行四边形的底和高是否相对应。 (6)总结平行四边形面积的字母代表公式:s=ah (师板书s=ah) (7)比较研究方法。 三、分层训练,理解内化。 课件显示练习题 第一层:基本练习 第二层:综合练习 第三层:扩展练习 四、课堂小结,巩固新知 小结:这节课我们学习了什么?你学会了什么? 《平行四边形的面积》教学设计内容的梳理: 在《2011版数学新课标》中,“图形与几何”这部分内容包括:空间和平面基本图形的认识,图形的性质、分类与度量,图形的平移、旋转、轴对称、相似和投影,平面图形基本性质的证明,运用坐标描述图形的位置和运动。“平行四边形的面积”这节课,是在图形的度量这一范围当中。 与其知识相关联的知识链接:一是空间平面基本图形的认识,二是长方形和正方形的周长与面积的计算,三是关于平行与垂直的认知。这些是学习本课内容的知识基础。此外,“平行四边形面积”这节内容,对后续学习三角形、梯形、组合图形及圆形等其他平面图形的面积也是一个铺垫。 教材的解读: 平行四边形面积计算是在学生掌握了图形的特征以及长方形、正方形面积计算的基础上学习的,是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积的基础,平行四边形面积的计算又为学习三角形和梯形面积计算打下坚实的基础。 学生的了解: 五年级的学生已经具备初步的预习能力,也有了一定的活动经验,根据教材中的描述,学生基本上能对割补法有初步的体验,只是在语言的描述上还有一定的困难。但小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难,因此本节课的学习就让学生充分利用好已有的`知识,调动他们多种感官全面参与新知的发生、发展和形成过程。 思想的渗透: “转化”是数学学习和研究的一种重要思想方法,平行四边形的面积公式推导就采用了转化的方法。在本节课的教学中,应以学生的探究活动为主要形式,通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法;另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么关系,从而找到面积的计算方法。这样,学生在理解的基础上掌握面积计算公式,印象深刻,思维也得到发展。 活动经验的积累: 平行四边形面积公式的推导是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本节课教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,切记有教师带着做。因此,教学中先用数格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。通过实际操作活动,发展学生的空间观念,培养动手操作能力。 很高兴,能有这样的机会和各位数学精英们切磋交流,还恳请各位多提宝贵意见,多多给予我指导,谢谢! 平行四边形的面积教学设计教学目标: 通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。 教学过程: 一、看一看:得出平行四边形与长方形的关系。 1、 让生看p69,观察方格纸上的长方形和平行四边形,并填写: 每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。 2、 观察并讨论:这个长方形和平行四边形有怎样的关系? 在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。 二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。 1、 出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)。 2、 让生小组讨论,尝试。 3、 检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。 (2)比一比:这两个图形有什么关系?什么变了,什么没变? 这两个图形形状变了,但面积相等。 (3)、请你量一量长方形的长与宽,算出它的面积。 4、 总结得出。 如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成: s=ah。 (1) 让生独立做。 (2) 检查:18×10=18(平方米)。 (3) 注意:面积单位。 6、 看书,质疑。 三、练习。 底(厘米)。 50。 12.5。 100。 9 高(厘米)。 40。 8 36.4。 4 面积(平方厘米)。 12米。 25米。 50厘米。 3、 有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米? 4、 有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少? 四、总结。 五、课堂作业。 p71 5。 微信公众号搜索 说说网 ,再点击 关注 ,这样您就可以每天订阅到精典说说美文了。每天都有分享。完全是免费订阅,请放心关注。
|
上一篇:小学生植树节演讲稿(优质13篇)
下一篇:最热交通违章检讨书(模板16篇)