教学工作计划的执行需要教师与学生、家长等多方面的配合和支持。以下是小编为您整理的优秀教学工作计划范本,包括了一些创新的教学方法和案例,希望对您有所启发。 勾股定理教案勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2. 即直角三角形两直角的平方和等于斜边的平方. 因此,在运用勾股定理计算三角形的边长时,要注意如下三点: (2)注意分清斜边和直角边,避免盲目代入公式致错; 2.学会用拼图法验证勾股定理 如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明. 请同学们自己证明图(2)、(3). 3.在数轴上表示无理数 二、典例精析 解:由勾股定理,得 132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是×12×5=30(cm2). 例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到 顶点b,则它走过的最短路程为 a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图. 解:将正方体侧面展开 数学勾股定理教案从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。 数学勾股定理教案教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 数学勾股定理教案本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。 采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。 初中数学勾股定理教案【知识与技能】 理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。 【过程与方法】 经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。 【情感、态度与价值观】 体会事物之间的联系,感受几何的魅力。 【重点】勾股定理的逆定理及其证明。 【难点】勾股定理的逆定理的证明。 (一)导入新课 复习勾股定理,分清其题设和结论。 提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。 出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。 (二)讲解新知 请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确 出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。 学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。 数学勾股定理教案1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。 2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。 3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。 初二数学勾股定理教案了解勾股定理的一些证明方法,会简单应用勾股定理解决问题 在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。 通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。 1、创设情境 师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。 设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。 2、探究勾股定理 观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界 追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系? 师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。 设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论 问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。 师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。 勾股定理教案教学目标: 1、知识目标: (1)掌握勾股定理; (2)学会利用勾股定理进行计算、证明与作图; (3)了解有关勾股定理的历史。 2、能力目标: (1)在定理的证明中培养学生的拼图能力; (2)通过问题的解决,提高学生的运算能力 3、情感目标: (1)通过自主学习的发展体验获取数学知识的感受; (2)通过有关勾股定理的历史讲解,对学生进行德育教育。 教学重点:勾股定理及其应用 教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。 教学用具:直尺,微机 教学方法:以学生为主体的讨论探索法 教学过程: 1、新课背景知识复习 (1)三角形的三边关系 (2)问题:(投影显示) 直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗? 2、定理的获得 让学生用文字语言将上述问题表述出来。 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 强调说明: (1)勾――最短的边、股――较长的直角边、弦――斜边 (2)学生根据上述学习,提出自己的问题(待定) 3、定理的证明方法 方法一:将四个全等的直角三角形拼成如图1所示的正方形。 方法二:将四个全等的直角三角形拼成如图2所示的正方形。 方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。 以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明 4、定理与逆定理的应用 5、课堂小结: (1)勾股定理的内容 (2)勾股定理的作用 已知直角三角形的两边求第三边 已知直角三角形的一边,求另两边的关系 6、布置作业: a、书面作业p130#1、2、3 b、上交作业p132#1、3 精选数学勾股定理教案教学目标: 1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。 2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。 教学重点: 引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。 教学难点: 用面积法方法证明勾股定理 课前准备: 多媒体ppt,相关图片 教学过程: (一)情境导入 1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。 初中数学《勾股定理》教案初中数学勾股定理知识点总结(一)知识与技能目标: 1、掌握勾股定理及其证明 2、会利用勾股定理进行直角三角形的简单计算。 3、了解有关勾股定理的历史知识 (二)过程与方法目标 经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。 (三)情感、态度和价值观 1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。 2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。 3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。 勾股定理教案勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《新版数学课程标准》对勾股定理教学内容的要求是: 2、在多种形式的数学活动中,发展合情推理能力; 3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性; 4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。 本节课的教学目标是: 1、能正确运用勾股定理及其逆定理解决简单的实际问题。 教学重点和难点: 应用勾股定理及其逆定理解决实际问题是重点。 把实际问题化归成数学模型是难点。 根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。 在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。 本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。 第一环节:情境引入 情景1:复习提 问:勾股定理的语言表述以及几何语言表达? 设计意图:温习旧知识,规范语言及数学表达,体现 设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。 第二环节:合作探究(圆柱体表面路程最短问题) 情景3:课本引例(蚂蚁怎样走最近) 第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题) 设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。 第四环节:议一议 内容:李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺: (1)你能替他想办法完成任务吗? 设计意图: 第五环节:方程与勾股定理 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。 第六环节:交流小结内容:师生相互交流总结: 1、解决实际问题的方法是建立数学模型求解、 2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、 3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。 第七环作业设计: 第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。 初中数学《勾股定理》教案教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。 学生分析: 1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。 2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。 设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。 教学目标: 1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。 2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。 3、培养学生学习数学的兴趣和爱国热情。 4、欣赏设计图形美。 教学准备阶段: 学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。 老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。 (一)引入 同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系) (二)实验探究 设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表: (讨论难点:以斜边为边的正方形的面积找法) 交流后得出一般结论: (用关于a、b、c的式子表示) (三)探索所得结论的正确性 当直角三角形的直角边分别为a 、b,斜边为c时, 是否一定成立? 1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行) 在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理: 如图2(用补的方法说明) 师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片) 如图3(用割的方法去探索) 师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的`等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题) 20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片) 如图4(构造新图形的方法去探索) 本节课学习的勾股定理用语言叙说为: 1、继续收集、整理有关勾股定理的证明方的探索问题并交流。 2、探索勾股定理的运用。 八年级数学教案勾股定理一、学情分析: 知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。 能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。 二、教学目标: 知识目标:1、分式的乘除运算法则 2、会进行简单的分式的乘除法运算 能力目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。 2、能解决一些与分式有关的简单的实际问题。 情感目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。 2、培养学生的创新意识和应用意识。 三、教学重点、难点 重点:分式乘除法的法则及应用 难点:分子、分母是多项式的分式的乘除法的运算 三、教学过程: 第一环节复习旧知识 复习小学学的分数乘除法法则, 活动目的: 复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备。 第二环节引入新课 活动内容 你能总结分式乘除法的法则吗?与同伴交流。 分式的乘除法的法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘. 活动目的: 让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。 第三环节知识运用 活动内容 例题1: (1)(2)例题2 (1)(2)活动目的: 通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。 第四环节走进中考 (2012.漳州)第五环节课时小结 活动内容: 1.分式的乘除法的法则 2.分式运算的结果通常要化成最简分式或整式. 3.学会类比的数学方法 第六环节当堂检测 文档为doc格式 勾股定理的教案本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下: (1)让学生主动提出问题 (2)让学生自己解决问题 (3)通过实际问题的解决,培养学生的数学意识. 勾股定理的教案1.理解勾股定理的逆定理的证明方法和证明过程; 2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形; 二数学思考 1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程; 2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用. 三解决问题 通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 四情感态度 2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神. 数学教案-勾股定理的逆定理一、创设问属情境,引入新课 师生行为学生分组讨论,交流总结;教师引导学生回忆. 师:那么,一个三角形满足什么条件,才能是直角三角形呢? 生:有一个内角是90°,那么这个三角形就为直角三角形. 生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形. 二、讲授新课 是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢? 活动3下面的三组数分别是一个三角形的三边长? 微信公众号搜索 说说网 ,再点击 关注 ,这样您就可以每天订阅到精典说说美文了。每天都有分享。完全是免费订阅,请放心关注。
|
上一篇:学校拉电协议书(优秀20篇)