心得体会是个人在经历某种事物、活动或事件后,通过思考、总结和反思,从中获得的经验和感悟。通过记录心得体会,我们可以更好地认识自己,借鉴他人的经验,规划自己的未来,为社会的进步做出贡献。下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。 高等数学的心得体会收获感想篇一高等数学是大学必修课程之一,是数学学科的重要组成部分。在我小学和初中的数学课上,我一直都是数学的优等生,但是对于高等数学,我却感到了困惑和挑战。在大学一年级的时候,我开始接触高等数学课程,刚开始觉得不太适应,因此在此期间感觉相当压抑。随着时间的推移,我开始更深入地研究这门学科,并尝试各种不同的学习方法,以便提高自己的成绩。最终,在经过无数次的努力后,我克服了困难,考出了令人满意的高等数学成绩。 第二段:回顾高等数学的考试经验 在学习高等数学的过程中,我不仅学到了许多知识和技能,也经历了很多考试。这些考试无疑是对我学习成果的检验,也让我有机会去发现自己的弱点,找到不足之处,并尝试改进和克服它们。另外,这些考试还让我体会到了竞争的压力和紧张气氛,这些因素都激发了我更深入地学习高等数学的热情。 第三段:总结高等数学的重要性 高等数学的学习不仅仅关乎学习数学知识,更重要的是培养了我学习的能力。在学习过程中,我不断努力,练习思考和分析的能力,提高了自己的逻辑推理和解决问题的能力。这些都是远远超出课程范围的技能,对我的职业生涯和个人发展有着深远的影响。此外,学习高等数学还让我感受到了知识的博大精深和对未知事物探索的热情,这些元素也能够对我未来的发展起到重要的支持作用。 第四段:点评吴昊的体会和经验 吴昊是我身边一个优秀的同学,在高等数学的学习中他取得了出色的成绩。他的学习经验和体会也对我启发和影响很大。从吴昊的学习经验中,我们可以看到他在学习过程中非常注重理论知识的掌握和实践能力的培养。而且,吴昊非常善于把理论知识和实践技能有机结合起来,不断地总结和反思,从而实现了对高等数学的深入理解。这些学习方法和态度对我指引良多,让我对高等数学的学习也有了更多的信心和动力。 第五段:思考未来发展方向 在未来的学习过程中,我还需要不断地探索和寻求新的机遇和挑战,以提高自己的学习能力和职业素养。高等数学作为一门必修课程,是培养我学习能力和解决问题能力的重要途径。在今后的学习和生活中,我将会更加努力和专注于高等数学的学习,以完成自己的职业规划和个人发展目标。 高等数学的心得体会收获感想篇二随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。 以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因.学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。 1)从正反两个层面理解概念 我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止.只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的.还是充分的?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。 2)学与问 发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。 3)做习题与想习题 学习数学,不做习题是绝对不行的.因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果.经过又一次正反两个层面的开掘.思考深入了,学习的兴趣也会逐步培育起来。 高等数学的心得体会收获感想篇三随着科技日新月异的发展和电脑无孔不入的应用。高等数学课程作为一种数学工具的功能正在逐步缩减。但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解?我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如何通过数学建模转化为一个数学同题,除了必须具备许多综合的知识,还需要具备一定的分析推理能力,这种素质自然可以通过生活来积累,但如果能够通过象高等数学这样的课程作为载体来进行系统训练,将是事半功倍的。 以往对工科学生来讲,高等数学的教学比较偏重于计算方法的训练,例如,如何计算极限,计算导数,计算积分,通过熟练掌握计算方法来加深对概念的理解,这是学习高等数学的一条捷便之径。但是从二十一世纪更加需要创新人才的观点看,从高等数学的概念中直接去提炼一种分析推理能力及实际应用能力,将是更加重要的。(当然,在改革的力度还未到位时,由于教学要求及教材等原因。学习高等数学并不能仅偏重于概念,对基本的计算方法必须熟练地掌握。如今就如何学好高等数学的基本概念。提出一些拙见供同学参考。 我们观察一个物体,如果仅仅通过平视去进行,那么对这个物体的认识往往是局部的,甚至是扭曲的,只有从正视、俯视、侧视的多角度去观察与综合,方能得到物体正确的空间定位。观察事物尚且如此,要理解一个抽象的概念,如果只有单向的思维方法,肯定只能浅尝辄止。只有从正反两个方向去透视概念,才能较深地抓住概念中一些本质的东西。这里所说的正方向思维应该包含几层意思:一是概念的定义是如何叙述的,二是概念所尉带的条件是必要的。还是充分的'?三是概念产生的实际背景是什么?这里所说的反方向思维又应该包含两层意思:一是对一个概念的否定是怎样表达的?二是如果错误的理解了概念中的一些条件会导致什么样的错误结果。 发现问题呢?首先要提倡自学,在自己预习教材(也锻炼了一种自学能力)的过程中很容易发现不懂的同题,带着同题再去听课就会有的放矢。其次是听课之后做习题之前要认真复习消化课上的内容,只要积极地开动脑筋,从中是会发现很多问题的,在这个较深层次上发现问题又去解决问题(可以通过同学与老师的帮助),那么分析问题的能力就会有一个质的提高。 学习数学,不做习题是绝对不行的。因为耐概念究竟理解与否检验的最后关口是习题。一道习题不会做或者做错了,肯定是某些概念投有消化好,带着习题再来复习理解概念,拄往会摩擦出新的思想火花。学习高等数学的过程中,我们不主张采用中学的题海战,但对每道习题不但要弄懂正确的解法,而且尽量要考虑能否有多种解法。这还不够,进一步的思考是一些似是而非的错误解法究竟错在哪里?必定是对概念理解的偏差才导致的错误结果。经过又一次正反两个层面的开掘。思考深入了,学习的兴趣也会逐步培育起来。 高等数学的心得体会收获感想篇四作为一门数学专业的必修课程,高等数学对学生来说并不易于掌握,需要在学习中不断地消化吸收。而吴昊,则是一位对高等数学有深入研究,并且在教学中取得了较好成绩的老师。因此,我们会特别关注吴昊的高等数学心得体会,从中汲取经验,提高学习效率。 第二段:心得体会一:高等数学需要系统性学习 吴昊表示,高等数学知识体系庞杂,而且知识之间的联系非常紧密。因此,学生需要先从系统性入手,掌握高等数学的整体框架和学习路线。在学习中要注意先后顺序,不能掉以轻心,否则就会遇到迷失方向的情况。 第三段:心得体会二:掌握基础知识是关键 高等数学中的每一个概念,都是建立在基础之上的。如果基础学习不扎实,那么后期的学习也无从谈起。因此,吴昊建议学生在学习高等数学之前,先重视基础概念的学习,巩固数学的基础知识,才能更好地理解和掌握高等数学。 第四段:心得体会三:灵活运用解题思路 高等数学中的问题并不单一,其解题方法也需要灵活变通。吴昊提醒学生,在学习高等数学时,不能仅仅停留在概念和公式的记忆,而应该注重解决具体问题的能力。在解题过程中,应该运用多种思路,灵活变换解题方法,从而提高解题的效率和准确性。 第五段:结尾及总结 高等数学在数学专业中占据着重要的地位,不仅有助于理论的研究,还能为工程应用提供数学依据。吴昊的高等数学心得体会不仅是学生能够学好高等数学的经验之谈,也能帮助教师对高等数学教学的优化。通过吴昊的经验与体会,我们可以更加准确地把握高等数学的学习方向,提高学习效率,做好学科的拓展与深化。 高等数学的心得体会收获感想篇五不是误导大家武汉大学的教科书实在是很难理解,两本加起来足是一本字典,是编者卖弄的园地,所以强烈建议不要和此书叫板,我曾试过一年完全是浪费时间,即使有同学看懂了,但仍难以对付实战。 我的建议是以战致战,就是通过做历年的考试题的方法顺利通过考试。此法花费时间极小,但可以获得很大的收益,从经济的角度讲就是效益最大化。 具体实施方法: 首先,高高兴兴的将书撕碎,优点有三:1)不给自己浪费时间的机会。2)建立此战必胜的信心。3)心情将更加愉悦。 其次:把各年试卷及答案]收集齐,网上不难找到,书店中也可买到。实在不行我给你个网址。强烈建议从1997年下半年到20xx年上半年共十套试卷,这套模拟题就是葵花宝典,没事就做吧,一遍不行,至少十遍,知道答案不行,必须要知道过程。当你做到第三遍时你就会发现所有试卷的共同之处,每年的试题是等的相似。第五遍第七遍时,你就会因为找不到不会的题而痛苦万分。 最后,是考前不用动笔用脑看题非常快的看上3遍,一个框架会产生在你的大脑中。合格证对于你来说,已经成了一张名片,伸手就拿! 20xx年,在今年进行新的考试。相信要在今年自考的广大群体以进入了金锣弥补的准备当中,小编也会更多的发布一些相关信息希望可以为您提供到帮助。 高等数学的心得体会收获感想篇六高等代数作为数学基础中的一门重要学科,是我在大学学习生涯中必修的一门课程。在这门课上,我深入学习了向量空间、线性代数、矩阵理论等等,并从中得出了一些心得体会。 第二段:突破自我认知 在学习高等代数的过程中,我发现自己原本对数学的学习方法是缺失的。在以往的学习过程中,我往往会死记硬背定理和公式,而高等代数的学习则需要我不断拓展自己的思路和认知。通过学习高等代数,我突破了自我对数学的认知,从“背诵”到“理解”,从“计算”到“思考”。 第三段:运用于实际生活 高等代数学习对我的实际生活也有很大的帮助。在学习过程中,我不仅掌握了向量、矩阵等基本的数学工具,还学会了如何将这些数学知识应用到生活实践中。在处理各种实际问题时,我能够运用这些学习到的高等代数知识,分析出问题的本质,得到更准确的结论。 第四段:加深对数学基础的理解 高等代数学习也加深了我对数学基础的理解。 我们只有在基础理解的基础上才能建立更深层的学习,高等代数学习在一定程度上巩固了我在初等数学学习中所掌握的知识,特别是空间几何方面的知识,越是基础的知识点就越是能让我对数学产生新的认知和体验。 第五段:总结 在高等代数的学习过程中,我收获了很多。除了掌握一些有用的数学知识外,我还学会了如何更好地应对数学学习,这对我的未来学习、工作、生活都有很大的帮助。高等代数学习让我不断突破自我,提高了对基础数学知识的理解,让我对数学知识拥有更深入的体会和认知。 高等数学的心得体会收获感想篇七在我的意识里,但凡数学成绩好的同学,一定都是天资聪颖;而对数学一往情深的同学,都绝非等闲之辈。自从上了高中,数学对我来说就成了软肋,硬伤,成了让我神伤的科目,突然间变得对数学一窍不通,才猛然间发觉自己的思维不知道被什么所禁锢,变得呆板而僵硬,做题犹如啃砖头。 大一的时候,意外地发现我们必须学习高数课,我虽然很敬佩我们的高数老师,他和蔼可亲,对我们关爱有加,把高数讲得清楚易懂,还告诉我们如何学好高数以便更好地发展中医。尽管如此,结局还是悲凉的,我终日以泪洗面,甚至产生了轻生的念头,大一对我来说是不堪重负,不忍回首的一年,期末了,还一道题都不会做,考完了,才发现自己是班上的垫底。高数,让我开始怀疑自己的智商,怀疑我以后能否自食其力。每一次上课,我都像个呆子,钻进耳朵的那些专业术语不知道该怎么去消化,而周围的同学也都还是能回答问题,自信满满,这种强烈的对比让我受挫,我开始重新审视自己。高数,带给我改变的动力,我感谢高数,但仅仅因为它是高“树”,而我被挂在了上面。 在后来的学习中,我再也不敢对专业课掉以轻心,我开始觉得期末考试的内容其实也没有那么难,那么高数呢?究竟是它太难还是我从心里对它产生畏惧,以至我没有勇气相信自己可以认识它?我怕,怕有朝一日终会再次遇到它,因为陌生,所以恐惧。 经历了一年多的成长,我发现其实很多事情都没有想象中那么难,也没有想象中那么简单,关键在于你如何对待它。我想起我可以为了自己做一个笔袋而一动不动坐一下午,并且为了解决出现的不足而把数据计算一遍又一遍,一遍遍拆,一遍遍改,在探索中前进,乐此不疲。而学习高数呢,一开始我怕,遇到不懂了,我更怕,最后呢,我只能逃课,不去听,不去想,以为这样就能躲过一切,我才发现,我是个彻彻底底的懦夫,我只会做逃兵,我并没有尽最大的努力。 在选课的时候,我发现还能选修高数,这次,我不想再错过。我想起了《追风筝的人》的一句话:“那里,有再一次成为好人的路。”是的,我选择重新认识高数,我要为自己过去的罪行赎罪。 再次接触高数,捧着2年前让我头疼的课本,我发现其实真的可以懂,老师讲的比较简单,思路也很清晰。重新认识了牛顿莱布尼兹的微积分,惊叹他们天才般的才智,运用无限的模糊理论,可以解决许多医学上的问题,我才觉得高数真的是充满了魅力和魔力,它能让我们把简单的问题先给复杂化最后再简单化,培养我们的思维,更智慧巧妙地解决生活中的问题。学好了高数,就像给你增添了一双隐形的翅膀,你拥有了更开阔缜密的思维,许多问题突然变得迎刃而解了。 当然,学好高数并非那么简单,但探索其中的奥秘确实非常有价值,我想,如果能把自己学到的高数知识运用到自己的生活,学习,工作上,才算是真正学好了高数,感谢高数,这次不仅仅因为它是高“树”,而是我明白,攀登上这棵高树,我看见了前所未有的迷人风景。 微信公众号搜索 说说网 ,再点击 关注 ,这样您就可以每天订阅到精典说说美文了。每天都有分享。完全是免费订阅,请放心关注。
|